Search results
Results From The WOW.Com Content Network
In statistics, the Phillips–Perron test (named after Peter C. B. Phillips and Pierre Perron) is a unit root test. [1] That is, it is used in time series analysis to test the null hypothesis that a time series is integrated of order 1.
In statistics, a unit root test tests whether a time series variable is non-stationary and possesses a unit root. The null hypothesis is generally defined as the presence of a unit root and the alternative hypothesis is either stationarity , trend stationarity or explosive root depending on the test used.
To estimate the slope coefficients, one should first conduct a unit root test, whose null hypothesis is that a unit root is present. If that hypothesis is rejected, one can use OLS. However, if the presence of a unit root is not rejected, then one should apply the difference operator to the series. If another unit root test shows the ...
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
In statistics, an augmented Dickey–Fuller test (ADF) tests the null hypothesis that a unit root is present in a time series sample. The alternative hypothesis depends on which version of the test is used, but is usually stationarity or trend-stationarity .
If we use the test statistic /, then under the null hypothesis is exactly 1 for two-sided p-value, and exactly / for one-sided left-tail p-value, and same for one-sided right-tail p-value. If we consider every outcome that has equal or lower probability than "3 heads 3 tails" as "at least as extreme", then the p -value is exactly 1 / 2 ...
Once the t value and degrees of freedom are determined, a p-value can be found using a table of values from Student's t-distribution. If the calculated p-value is below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or 0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.
Which of the three main versions of the test should be used is not a minor issue. The decision is important for the size of the unit root test (the probability of rejecting the null hypothesis of a unit root when there is one) and the power of the unit root test (the probability of rejecting the null hypothesis of a unit root when there is not one).