Ad
related to: ideal transformer calculation equation
Search results
Results From The WOW.Com Content Network
An ideal transformer is linear, lossless and perfectly coupled. Perfect coupling implies infinitely high core magnetic permeability and winding inductance and zero net magnetomotive force (i.e. i p n p − i s n s = 0). [3] [c] Ideal transformer connected with source V P on primary and load impedance Z L on secondary, where 0 < Z L < ∞.
Darlington gives an equivalent transform that can eliminate an ideal transformer altogether. This technique requires that the transformer is next to (or capable of being moved next to) an "L" network of same-kind impedances. The transform in all variants results in the "L" network facing the opposite way, that is, topologically mirrored. [2]
Real transformer equivalent circuit. One case of voltage regulation is in a transformer. The unideal components of the transformer cause a change in voltage when current flows. Under no load, when no current flows through the secondary coils, V nl is given by the ideal model, where V S = V P *N S /N P.
To match the impedances, both cables must be connected to a matching transformer with a turns ratio of 2:1. In this example, the 300-ohm line is connected to the transformer side with more turns; the 75-ohm cable is connected to the transformer side with fewer turns. The formula for calculating the transformer turns ratio for this example is:
Leakage inductance has the useful effect of limiting the current flows in a transformer (and load) without itself dissipating power (excepting the usual non-ideal transformer losses). Transformers are generally designed to have a specific value of leakage inductance such that the leakage reactance created by this inductance is a specific value ...
The equations given here are valid for complex as well as real impedances. Complex impedance is a quantity measured in ohms which represents resistance as positive real numbers in the usual manner, and also represents reactance as positive and negative imaginary values .
In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. . Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to t
An ideal gyrator is similar to an ideal transformer in being a linear, lossless, passive, memoryless two-port device. However, whereas a transformer couples the voltage on port 1 to the voltage on port 2, and the current on port 1 to the current on port 2, the gyrator cross-couples voltage to current and current to voltage.