Ad
related to: write each fraction in simplest form
Search results
Results From The WOW.Com Content Network
An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1]
A cake with one quarter (one fourth) removed. The remaining three fourths are shown by dotted lines and labeled by the fraction 1 ⁄ 4. A fraction (from Latin: fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size ...
As for fractions, the simplest form is considered that in which the numbers in the ratio are the smallest possible integers. Thus, the ratio 40:60 is equivalent in meaning to the ratio 2:3, the latter being obtained from the former by dividing both quantities by 20. Mathematically, we write 40:60 = 2:3, or equivalently 40:60∷2:3.
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
By using a dot to divide the digits into two groups, one can also write fractions in the positional system. For example, the base 2 numeral 10.11 denotes 1×2 1 + 0×2 0 + 1×2 −1 + 1×2 −2 = 2.75. In general, numbers in the base b system are of the form:
Conversely the period of the repeating decimal of a fraction c / d will be (at most) the smallest number n such that 10 n − 1 is divisible by d. For example, the fraction 2 / 7 has d = 7, and the smallest k that makes 10 k − 1 divisible by 7 is k = 6, because 999999 = 7 × 142857. The period of the fraction 2 / 7 is ...
Another meaning for generalized continued fraction is a generalization to higher dimensions. For example, there is a close relationship between the simple continued fraction in canonical form for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Generalizing this idea, one might ...
A fraction 3 / y requires three terms in its greedy expansion if and only if y ≡ 1 (mod 6), for then −y mod x = 2 and y(y + 2) / 3 is odd, so the fraction remaining after a single step of the greedy expansion, () ⌈ ⌉ = (+) is in simplest terms. The simplest fraction 3 / y with a three-term expansion is 3 / 7 .