Search results
Results From The WOW.Com Content Network
At the inner mitochondrial membrane, electrons from NADH and FADH 2 pass through the electron transport chain to oxygen, which provides the energy driving the process as it is reduced to water. [4] The electron transport chain comprises an enzymatic series of electron donors and acceptors.
NADH and FADH 2 undergo oxidation in the electron transport chain by transferring an electrons to regenerate NAD + and FAD. Protons are pulled into the intermembrane space by the energy of the electrons going through the electron transport chain. Four electrons are finally accepted by oxygen in the matrix to complete the electron transport chain.
The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.
Acetyl-CoA enters the citric acid cycle, generating NADH and FADH 2, which are electron carriers used in the electron transport chain. It is named as such because the beta carbon of the fatty acid chain undergoes oxidation and is converted to a carbonyl group to start the cycle all over again.
The potential of NADH and FADH 2 is converted to more ATP through an electron transport chain with oxygen and protons (hydrogen ions) as the "terminal electron acceptors". Most of the ATP produced by aerobic cellular respiration is made by oxidative phosphorylation .
FADH 2 then reverts to FAD, sending its two high-energy electrons through the electron transport chain; the energy in FADH 2 is enough to produce 1.5 equivalents of ATP [19] by oxidative phosphorylation.
The last process in aerobic respiration is oxidative phosphorylation, also known as the electron transport chain. Here NADH and FADH 2 deliver their electrons to oxygen and protons at the inner membranes of the mitochondrion, facilitating the production of ATP. Oxidative phosphorylation contributes the majority of the ATP produced, compared to ...
FADH 2 then reduces coenzyme Q (ubiquinone to ubiquinol) whose electrons enter into oxidative phosphorylation. [12] This reaction is irreversible. [13] These electrons bypass Complex I of the electron transport chain, making the glycerol-3-phosphate shuttle less energetically efficient compared to oxidation of NADH by Complex I. [14]