Search results
Results From The WOW.Com Content Network
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength, λ, associated with a particle with momentum p through the Planck constant, h: =.
Such a wave, which later received the name matter wave, or de Broglie wave, in the process of body movement remains in phase with the internal periodic process. Having then examined the motion of an electron in a closed orbit, the scientist showed that the requirement for phase matching directly leads to the quantum Bohr-Sommerfeld condition ...
Matter waves were first proposed by Louis de Broglie and are sometimes called de Broglie waves. They form a key aspect of wave–particle duality and experiments have since supported the idea. The wave associated with a particle of a given mass, such as an atom , has a defined frequency , and a change in the duration of one cycle from peak to ...
De Broglie's treatment of the Bohr atom was ultimately unsuccessful, but his hypothesis served as a starting point for Schrödinger's wave equation. Matter behaving as a wave was first demonstrated experimentally for electrons: a beam of electrons can exhibit diffraction, just like a beam of light or a water wave. Three years after de Broglie ...
Louis de Broglie's early results on the pilot wave theory were presented in his thesis (1924) in the context of atomic orbitals where the waves are stationary.Early attempts to develop a general formulation for the dynamics of these guiding waves in terms of a relativistic wave equation were unsuccessful until in 1926 Schrödinger developed his non-relativistic wave equation.
In 1924, French physicist Louis de Broglie postulated that matter exhibits a wave-like nature given by: =, where h is the Planck constant, and p is the particle's momentum, and λ is the wavelength of the matter wave. From this, it follows that interference effects between particles of matter will occur.
In 1924, Louis de Broglie introduced the wave theory of matter, which was extended to a semiclassical equation for matter waves by Albert Einstein a short time later. In 1926 Erwin Schrödinger found a completely quantum mechanical wave-equation, which reproduced all the successes of the old quantum theory without ambiguities and ...
1923 – Louis de Broglie extends wave–particle duality to particles, postulating that electrons in motion are associated with waves. He predicts that the wavelengths are given by the Planck constant h divided by the momentum of the mv = p of the electron: λ = h / mv = h / p. [36]