When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.

  3. Probabilistic data association filter - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_data...

    MATLAB: The PDAF and JPDAF algorithms are implemented in the singleScanUpdate function that is part of the United States Naval Research Laboratory's free Tracker Component Library. [3] Python: The PDAF and other data association methods are implemented in Stone-Soup. [4] A tutorial demonstrates how the algorithms can be used. [5] [6]

  4. Probabilistic numerics - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_numerics

    Bayesian optimization algorithms operate by maintaining a probabilistic belief about throughout the optimization procedure; this often takes the form of a Gaussian process prior conditioned on observations. This belief then guides the algorithm in obtaining observations that are likely to advance the optimization process.

  5. Algorithmic inference - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_inference

    Algorithmic inference gathers new developments in the statistical inference methods made feasible by the powerful computing devices widely available to any data analyst. Cornerstones in this field are computational learning theory, granular computing, bioinformatics, and, long ago, structural probability (Fraser 1966). The main focus is on the ...

  6. Variable elimination - Wikipedia

    en.wikipedia.org/wiki/Variable_elimination

    Variable elimination (VE) is a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian networks and Markov random fields. [1] It can be used for inference of maximum a posteriori (MAP) state or estimation of conditional or marginal distributions over a subset of variables.

  7. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.

  8. Bayesian inference in phylogeny - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference_in...

    The LOCAL algorithm is an improvement of the GLOBAL algorithm presented in Mau, Newton and Larget (1999) [14] in which all branch lengths are changed in every cycle. The LOCAL algorithms modifies the tree by selecting an internal branch of the tree at random. The nodes at the ends of this branch are each connected to two other branches.

  9. Probabilistic programming - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_programming

    Probabilistic programming (PP) is a programming paradigm based on the declarative specification of probabilistic models, for which inference is performed automatically. [1] Probabilistic programming attempts to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.