When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    The logarithmic derivative is then / and one can draw the general conclusion that for f meromorphic, the singularities of the logarithmic derivative of f are all simple poles, with residue n from a zero of order n, residue −n from a pole of order n. See argument principle. This information is often exploited in contour integration.

  3. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] (⁡) ′ = ′ ′ = (⁡) ′.

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  6. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    How to establish this derivative of the natural logarithm depends on how it is defined firsthand. If the natural logarithm is defined as the integral ln ⁡ x = ∫ 1 x 1 t d t , {\displaystyle \ln x=\int _{1}^{x}{\frac {1}{t}}\,dt,} then the derivative immediately follows from the first part of the fundamental theorem of calculus .

  7. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The natural logarithm has the number e ≈ 2.718 as its base; its use is widespread in mathematics and physics because of its very simple derivative. The binary logarithm uses base 2 and is widely used in computer science, information theory, music theory, and photography.

  8. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The derivative of order zero of f is defined to be f itself and (x − a) 0 and 0! are both defined to be 1. ... The Taylor series for the natural logarithm is ...

  9. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The logarithmic derivative of the gamma function is called the digamma function; higher derivatives are the polygamma functions. The analog of the gamma function over a finite field or a finite ring is the Gaussian sums, a type of exponential sum. The reciprocal gamma function is an entire function and has been studied as a specific topic.