When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wavelet - Wikipedia

    en.wikipedia.org/wiki/Wavelet

    The wavelets forming a continuous wavelet transform (CWT) are subject to the uncertainty principle of Fourier analysis respective sampling theory: [4] given a signal with some event in it, one cannot assign simultaneously an exact time and frequency response scale to that event. The product of the uncertainties of time and frequency response ...

  3. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1] The sum of these spherical wavelets forms a new wavefront.

  4. Huygens principle of double refraction - Wikipedia

    en.wikipedia.org/wiki/Huygens_principle_of...

    [3] [4] According to the Huygens–Fresnel principle, each point on a wavefront can be considered a secondary point source of waves, so a new wavefront is formed after the secondary wavelets have traveled for a period equal to one vibration cycle. This new wavefront can be described as an envelope or tangent surface to these secondary wavelets. [5]

  5. Wavefront - Wikipedia

    en.wikipedia.org/wiki/Wavefront

    The plane wavefront is a good model for a surface-section of a very large spherical wavefront; for instance, sunlight strikes the earth with a spherical wavefront that has a radius of about 150 million kilometers (1 AU). For many purposes, such a wavefront can be considered planar over distances of the diameter of Earth.

  6. Treatise on Light - Wikipedia

    en.wikipedia.org/wiki/Treatise_on_Light

    The new wavefront, then, is the tangential surface to all the secondary wavelets in the direction of propagation. [13] Critical to Huygens’s analysis is that these secondary wavelets can be mathematically constructed, allowing one to work backward from the secondary wavelets to construct a primary wave which has traveled for a certain time.

  7. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  8. Superposition principle - Wikipedia

    en.wikipedia.org/wiki/Superposition_principle

    On the other hand, if the waves to be superposed originate by subdividing a wavefront into infinitesimal coherent wavelets (sources), the effect is called diffraction. That is the difference between the two phenomena is [a matter] of degree only, and basically, they are two limiting cases of superposition effects. Yet another source concurs: [4]

  9. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    A diffraction pattern of a red laser beam projected onto a plate after passing through a small circular aperture in another plate. Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture.