Search results
Results From The WOW.Com Content Network
For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v , an optimization problem might be "find a path from u to v that uses the fewest edges".
The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.
On the other hand, if a constrained optimization is done (for example, with Lagrange multipliers), the problem may become one of saddle point finding, in which case the Hessian will be symmetric indefinite and the solution of + will need to be done with a method that will work for such, such as the variant of Cholesky factorization or the ...
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
Using Lagrange multipliers, this problem can be converted into an unconstrained optimization problem: (,) = + . The two critical points occur at saddle points where x = 1 and x = −1 . In order to solve this problem with a numerical optimization technique, we must first transform this problem such that the critical points occur at local minima.
Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...
A solution to the relaxed problem is an approximate solution to the original problem, and provides useful information. The method penalizes violations of inequality constraints using a Lagrange multiplier, which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization.
This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows: An instance of the problem has a number of agents (i.e., cardinality parameter) and a number of job characteristics (i.e., dimensionality parameter) such as task, machine, time interval, etc. For example, an ...