When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. [1] The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric , allowing distances to be measured on that surface.

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by

  4. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold , one can additionally arrange that the metric tensor is the Kronecker delta at the point p , and that the first ...

  5. Affine connection - Wikipedia

    en.wikipedia.org/wiki/Affine_connection

    Both definitions are facilitated by the realisation that 1-forms (θ i, ω k j) in the flat model fit together to give a 1-form with values in the Lie algebra aff(n) of the affine group Aff(n). In these definitions, M is a smooth n-manifold and A = Aff(n)/GL(n) is an affine space of the same dimension.

  6. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  7. Connection form - Wikipedia

    en.wikipedia.org/wiki/Connection_form

    The connection form is not tensorial because under a change of basis, the connection form transforms in a manner that involves the exterior derivative of the transition functions, in much the same way as the Christoffel symbols for the Levi-Civita connection. The main tensorial invariant of a connection form is its curvature form.

  8. Greek letters used in mathematics, science, and engineering

    en.wikipedia.org/wiki/Greek_letters_used_in...

    the Christoffel symbols that describe components of a metric connection; the stack alphabet in the formal definition of a pushdown automaton, or the tape-alphabet in the formal definition of a Turing machine; the Feferman–Schütte ordinal Γ 0; represents: the specific weight of substances; the lower incomplete gamma function

  9. Palatini identity - Wikipedia

    en.wikipedia.org/wiki/Palatini_identity

    The Riemann curvature tensor is defined in terms of the Levi-Civita connection as = +. Its variation is = + +. While the connection is not a tensor, the difference between two connections is, so we can take its covariant derivative