When.com Web Search

  1. Ads

    related to: using matrices in real life worksheet 1

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Orthogonal matrices with determinant 1 form a subgroup called special orthogonal group. Every finite group is isomorphic to a matrix group, as one can see by considering the regular representation of the symmetric group. [69] General groups can be studied using matrix groups, which are comparatively well understood, using representation theory ...

  3. Matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Matrix_analysis

    In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...

  4. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The identity matrices (which are the square matrices whose entries are zero outside of the main diagonal and 1 on the main diagonal) are identity elements of the matrix product. It follows that the n × n matrices over a ring form a ring, which is noncommutative except if n = 1 and the ground ring is commutative.

  5. Matrix chain multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_chain_multiplication

    The straightforward multiplication of a matrix that is X × Y by a matrix that is Y × Z requires XYZ ordinary multiplications and X(Y − 1)Z ordinary additions. In this context, it is typical to use the number of ordinary multiplications as a measure of the runtime complexity. If A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × ...

  6. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    This matrix is then modified using elementary row operations until it reaches reduced row echelon form. There are three types of elementary row operations: [8] Type 1: Swap the positions of two rows. Type 2: Multiply a row by a nonzero scalar. Type 3: Add to one row a scalar multiple of another.

  7. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    This reduces the number of matrix additions and subtractions from 18 to 15. The number of matrix multiplications is still 7, and the asymptotic complexity is the same. [6] The algorithm was further optimised in 2017, [7] reducing the number of matrix additions per step to 12 while maintaining the number of matrix multiplications, and again in ...

  8. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A matrix with all entries either 0 or 1. Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    Specifically, if the eigenvalues all have real parts that are negative, then the system is stable near the stationary point. If any eigenvalue has a real part that is positive, then the point is unstable. If the largest real part of the eigenvalues is zero, the Jacobian matrix does not allow for an evaluation of the stability. [12]