Search results
Results From The WOW.Com Content Network
The R-value is the building industry term [3] for thermal resistance "per unit area." [4] It is sometimes denoted RSI-value if the SI units are used. [5] An R-value can be given for a material (e.g., for polyethylene foam), or for an assembly of materials (e.g., a wall or a window). In the case of materials, it is often expressed in terms of R ...
Thermal insulance (R-value) is a measure of a material's resistance to the heat current. It quantifies how effectively a material can resist the transfer of heat through conduction, convection, and radiation.
Architects and engineers call the resulting values either the U-Value or the R-Value of a construction assembly like a wall. Each type of value (R or U) are related as the inverse of each other such that R-Value = 1/U-Value and both are more fully understood through the concept of an overall heat transfer coefficient described in lower section ...
R-value (soils) in geotechnical engineering, the stability of soils and aggregates for pavement construction; R-factor (crystallography), a measure of the agreement between the crystallographic model and the diffraction data; R 0 or R number, the basic reproduction number in epidemiology; In computer science, a pure value which cannot be ...
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
The R-Value test [1] measures the response of a compacted sample of soil or aggregate to a vertically applied pressure under specific conditions. This test is used by Caltrans for pavement design, replacing the California bearing ratio test. Many other agencies have adopted the California pavement design method, and specify R-Value testing for ...
These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [ + ], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.
Thus a wall material that performs to R-19 in the laboratory might perform like an R-8 wall in the real world. For one thing, architects talk in terms of the insulation material (maybe fiberglass bat) as if this is the R-value of the wall and do not count the wood that connects 20% of the building interior to exterior (wood has a very poor R ...