When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Preorder - Wikipedia

    en.wikipedia.org/wiki/Preorder

    Both of these are special cases of a preorder: an antisymmetric preorder is a partial order, and a symmetric preorder is an equivalence relation. Moreover, a preorder on a set X {\displaystyle X} can equivalently be defined as an equivalence relation on X {\displaystyle X} , together with a partial order on the set of equivalence class.

  3. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...

  4. Specialization (pre)order - Wikipedia

    en.wikipedia.org/wiki/Specialization_(pre)order

    In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space.For most spaces that are considered in practice, namely for all those that satisfy the T 0 separation axiom, this preorder is even a partial order (called the specialization order).

  5. Finite topological space - Wikipedia

    en.wikipedia.org/wiki/Finite_topological_space

    It follows that a space X is T 0 if and only if the specialization preorder ≤ on X is a partial order. There are numerous partial orders on a finite set. Each defines a unique T 0 topology. Similarly, a space is R 0 if and only if the specialization preorder is an equivalence relation.

  6. Order type - Wikipedia

    en.wikipedia.org/wiki/Order_type

    Firstly, the order type of the set of natural numbers is ω. Any other model of Peano arithmetic, that is any non-standard model, starts with a segment isomorphic to ω but then adds extra numbers. For example, any countable such model has order type ω + (ω* + ω) ⋅ η. Secondly, consider the set V of even ordinals less than ω ⋅ 2 + 7:

  7. Linear extension - Wikipedia

    en.wikipedia.org/wiki/Linear_extension

    This area also includes one of order theory's most famous open problems, the 1/32/3 conjecture, which states that in any finite partially ordered set that is not totally ordered there exists a pair (,) of elements of for which the linear extensions of in which < number between 1/3 and 2/3 of the total number of linear extensions of . [11 ...

  8. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    The red subset = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element. In mathematics , especially in order theory , a maximal element of a subset S {\displaystyle S} of some preordered set is an element of S {\displaystyle S} that is not smaller than any other element in S ...

  9. Talk:Preorder - Wikipedia

    en.wikipedia.org/wiki/Talk:Preorder

    The relation <~ should be pictured as: 0 -> 1 and 1 -> 0, 1 -> 2 and 2 -> 1 etc. From the picture it follows: 0 <~ 2, 2 <~ 3, but 3 <~ 0. Madyno 17:40, 23 April 2022 (UTC) Hasse diagrams for partial orders show only a transitive reduction of the relation. In the article's image, I applied this principle to a preorder. For example, 1R0 follows ...