Ads
related to: sample of calculus problem based research questions with pictures and answers
Search results
Results From The WOW.Com Content Network
Archimedes's cattle problem (or the problema bovinum or problema Archimedis) is a problem in Diophantine analysis, the study of polynomial equations with integer solutions. Attributed to Archimedes , the problem involves computing the number of cattle in a herd of the sun god from a given set of restrictions.
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...
Elementary Calculus: An Infinitesimal Approach; Nonstandard calculus; Infinitesimal; Archimedes' use of infinitesimals; For further developments: see list of real analysis topics, list of complex analysis topics, list of multivariable calculus topics
In September 2019, news broke regarding progress on this 82-year-old question, thanks to prolific mathematician Terence Tao. And while the story of Tao’s breakthrough is promising, the problem ...
In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad ...
A Python 3 based simulation using Matplotlib to sketch Buffon's needle experiment with the parameters t = 5.0, l = 2.6. Observe the calculated value of π (y-axis) approaching 3.14 as the number of tosses (x-axis) approaches infinity. In the first, simpler case above, the formula obtained for the probability P can be rearranged to
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). [25] Modern numerical analysis does not seek exact answers, because exact answers are often impossible to obtain in practice.