When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. One-class classification - Wikipedia

    en.wikipedia.org/wiki/One-class_classification

    In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, [1] although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary.

  3. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  4. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    For the one-versus-one approach, classification is done by a max-wins voting strategy, in which every classifier assigns the instance to one of the two classes, then the vote for the assigned class is increased by one vote, and finally the class with the most votes determines the instance classification. Directed acyclic graph SVM (DAGSVM) [32]

  5. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    The SVM learning code from both libraries is often reused in other open source machine learning toolkits, including GATE, KNIME, Orange [3] and scikit-learn. [4] Bindings and ports exist for programming languages such as Java, MATLAB, R, Julia, and Python. It is available in e1071 library in R and scikit-learn in Python.

  6. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  7. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The vertical axis represents the value of the Hinge loss (in blue) and zero-one loss (in green) for fixed t = 1, while the horizontal axis represents the value of the prediction y. The plot shows that the Hinge loss penalizes predictions y < 1 , corresponding to the notion of a margin in a support vector machine.

  8. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  9. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    In this version one finds the solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem for classical SVMs. Least-squares SVM classifiers were proposed by Johan Suykens and Joos Vandewalle. [1] LS-SVMs are a class of kernel-based learning methods.