When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Slack variable - Wikipedia

    en.wikipedia.org/wiki/Slack_variable

    Slack variables give an embedding of a polytope into the standard f-orthant, where is the number of constraints (facets of the polytope). This map is one-to-one (slack variables are uniquely determined) but not onto (not all combinations can be realized), and is expressed in terms of the constraints (linear functionals, covectors).

  3. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    with v the Lagrange multipliers on the non-negativity constraints, λ the multipliers on the inequality constraints, and s the slack variables for the inequality constraints. The fourth condition derives from the complementarity of each group of variables (x, s) with its set of KKT vectors (optimal Lagrange multipliers) being (v, λ). In that case,

  4. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    In effect, the variable corresponding to the pivot column enters the set of basic variables and is called the entering variable, and the variable being replaced leaves the set of basic variables and is called the leaving variable. The tableau is still in canonical form but with the set of basic variables changed by one element. [13] [14]

  5. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    For less-than or equal constraints, introduce slack variables s i so that all constraints are equalities. Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0.

  6. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    So if the i-th slack variable of the primal is not zero, then the i-th variable of the dual is equal to zero. Likewise, if the j-th slack variable of the dual is not zero, then the j-th variable of the primal is equal to zero. This necessary condition for optimality conveys a fairly simple economic principle.

  7. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    A BFS can have less than m non-zero variables; in that case, it can have many different bases, all of which contain the indices of its non-zero variables. 3. A feasible solution x {\displaystyle \mathbf {x} } is basic if-and-only-if the columns of the matrix A K {\displaystyle A_{K}} are linearly independent, where K is the set of indices of ...

  8. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    One proof uses the simplex algorithm and relies on the proof that, with the suitable pivot rule, it provides a correct solution. The proof establishes that, once the simplex algorithm finishes with a solution to the primal LP, it is possible to read from the final tableau, a solution to the dual LP.

  9. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Many optimization algorithms need to start from a feasible point. One way to obtain such a point is to relax the feasibility conditions using a slack variable; with enough slack, any starting point is feasible. Then, minimize that slack variable until the slack is null or negative.