Search results
Results From The WOW.Com Content Network
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0 ) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω .
It can be made to hold for all real numbers by extending the definition of negation to include zero and negative numbers. Specifically: The negation of 0 is 0, and; The negation of a negative number is the corresponding positive number. For example, the negation of −3 is +3. In general,
[23] [24] [25] In the late 1950s, as part of the New Math movement, [26] American elementary school teachers began teaching that whole numbers referred to the natural numbers, excluding negative numbers, while integer included the negative numbers. [27] [28] The whole numbers remain ambiguous to the present day. [29]
Negative numbers are usually written with a negative sign (a minus sign). As an example, the negative of 7 is written −7, and 7 + (−7) = 0. When the set of negative numbers is combined with the set of natural numbers (including 0), the result is defined as the set of integers, Z also written .
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The definition of a finite set is given independently of natural numbers: [3] Definition: A set is finite if and only if any non empty family of its subsets has a minimal element for the inclusion order. Definition: a cardinal n is a natural number if and only if there exists a finite set of which the cardinal is n. 0 = Card (∅)
Negative number In mathematics, a negative number is the opposite (mathematics) of a positive real number.[1] Equivalently, a negative number is a real number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset.