Search results
Results From The WOW.Com Content Network
Early long-term potentiation (E-LTP) is the first phase of long-term potentiation (LTP), a well-studied form of synaptic plasticity, and consists of an increase in synaptic strength. [1] LTP could be produced by repetitive stimulation of the presynaptic terminals, and it is believed to play a role in memory function in the hippocampus, amygdala ...
A similar process occurs in retrograde neurotransmission, where the dendrites of the postsynaptic neuron release retrograde neurotransmitters (e.g., endocannabinoids; synthesized in response to a rise in intracellular calcium levels) that signal through receptors that are located on the axon terminal of the presynaptic neuron, mainly at ...
Chemical synaptic transmission is the transfer of neurotransmitters or neuropeptides from a presynaptic axon to a postsynaptic dendrite. [3] Unlike an electrical synapse, the chemical synapses are separated by a space called the synaptic cleft , typically measured between 15 and 25 nm.
Thus these interactions govern the generation of synaptic transmission. [22] Synaptic communication is distinct from an ephaptic coupling, in which communication between neurons occurs via indirect electric fields. An autapse is a chemical or electrical synapse that forms when the axon of one neuron synapses onto dendrites of the same neuron.
Early life stress is believed to produce changes in brain development by interfering with neurogenesis, synaptic production, and pruning of synapses and receptors. [58] Interference with these processes could result in increased or decreased brain region volumes, potentially explaining the findings that early life stress is associated with ...
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...
The process of synaptic pruning known as synapse elimination is a presumably activity-dependent process that involves competition between axons. Hypothetically, a synapse strong enough to produce an action potential will trigger the myonuclei directly across from the axon to release synaptotrophins that will strengthen and maintain well ...
Brief stimulation produces adaptation which occurs and recovers while more prolonged stimulation can produce slower and more lasting forms of adaptation. [2] Also, repeated sensory stimulation appears to temporarily decrease the gain of thalamocortical synaptic transmission. Adaptation of cortical responses was stronger and recovered more ...