When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    An edge coloring of a graph is a proper coloring of the edges, meaning an assignment of colors to edges so that no vertex is incident to two edges of the same color. An edge coloring with k colors is called a k-edge-coloring and is equivalent to the problem of partitioning the edge set into k matchings.

  3. Edge coloring - Wikipedia

    en.wikipedia.org/wiki/Edge_coloring

    A 3-edge-coloring of the Desargues graph. In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green.

  4. Graph coloring game - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring_game

    The edge coloring game, introduced by Lam, Shiu and Zu, [23] is similar to the vertex coloring game, except Alice and Bob construct a proper edge coloring instead of a proper vertex coloring. Its rules are as follows: Alice and Bob are coloring the edges a graph G with a set k of colors.

  5. List edge-coloring - Wikipedia

    en.wikipedia.org/wiki/List_edge-coloring

    A list edge-coloring is a choice of a color for each edge, from its list of allowed colors; a coloring is proper if no two adjacent edges receive the same color. A graph G is k-edge-choosable if every instance of list edge-coloring that has G as its underlying graph and that provides at least k allowed colors for each edge of G has a proper ...

  6. Vizing's theorem - Wikipedia

    en.wikipedia.org/wiki/Vizing's_theorem

    Misra & Gries (1992) describe a polynomial time algorithm for coloring the edges of any graph with Δ + 1 colors, where Δ is the maximum degree of the graph. That is, the algorithm uses the optimal number of colors for graphs of class two, and uses at most one more color than necessary for all graphs.

  7. Total coloring - Wikipedia

    en.wikipedia.org/wiki/Total_coloring

    The total chromatic number χ″(G) of a graph G is the fewest colors needed in any total coloring of G. The total graph T = T(G) of a graph G is a graph such that (i) the vertex set of T corresponds to the vertices and edges of G and (ii) two vertices are adjacent in T if and only if their corresponding elements are either adjacent or incident ...

  8. Incidence coloring - Wikipedia

    en.wikipedia.org/wiki/Incidence_coloring

    In graph theory, the act of coloring generally implies the assignment of labels to vertices, edges or faces in a graph. The incidence coloring is a special graph labeling where each incidence of an edge with a vertex is assigned a color under certain constraints.

  9. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Many problems and theorems in graph theory have to do with various ways of coloring graphs. Typically, one is interested in coloring a graph so that no two adjacent vertices have the same color, or with other similar restrictions. One may also consider coloring edges (possibly so that no two coincident edges are the same color), or other ...