Search results
Results From The WOW.Com Content Network
A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...
Using breeder reactors, known thorium and uranium resources can both generate world-scale energy for thousands of years. Thorium-based fuels also display favorable physical and chemical properties that improve reactor and repository performance. Compared to the predominant reactor fuel, uranium dioxide (UO 2), thorium dioxide (ThO
Performing research and testing to qualify the TRISO LEU fuel for GEN-IV reactors in the US. Exploring the use of proliferation-resistant fuels in the US, including thorium-based and other advanced fuel cycle concepts. Performing basic and applied research using the enhanced capabilities offered by a "Generation IV" type nuclear reactor system.
MSRE was a 7.4 MW th test reactor simulating the neutronic "kernel" of a type of epithermal thorium molten salt breeder reactor called the liquid fluoride thorium reactor (LFTR). The large (expensive) breeding blanket of thorium salt was omitted in favor of neutron measurements.
A small modular reactor (SMR) based on the LF1, as well as a fuel salt research facility, is planned for the same site. New reactor specifications include: core graphite 3 m tall x 2.2 m wide, 700 °C operating temperature, 60 MW thermal output, and an experimental supercritical carbon dioxide -based closed-cycle gas turbine to convert the ...
[3] it produces 30 kW of thermal energy at full power. [2] [4] KAMINI is cooled and moderated by light water, uses a beryllium oxide neutron reflector, [2] and is fueled with uranium-233 metal produced by the thorium fuel cycle harnessed by the neighbouring FBTR reactor. As of 2006, it is the world's only thorium-based experimental reactor.
A two fluid reactor that has thorium in the fuel salt is sometimes called a "one and a half fluid" reactor, or 1.5 fluid reactor. [26] This is a hybrid, with some of the advantages and disadvantages of both 1 fluid and 2 fluid reactors. Like the 1 fluid reactor, it has thorium in the fuel salt, which complicates the fuel processing.
Molten-Salt Reactor Experiment Shippingport Atomic Power Station German THTR-300. In 1946, the public first became informed of uranium-233 bred from thorium as "a third available source of nuclear energy and atom bombs" (in addition to uranium-235 and plutonium-239), following a United Nations report and a speech by Glenn T. Seaborg.