When.com Web Search

  1. Ad

    related to: find two nontrivial functions calculator formula

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    This was the first use of a digital computer to calculate the zeros. 1956 15 000: D. H. Lehmer (1956) discovered a few cases where the zeta function has zeros that are "only just" on the line: two zeros of the zeta function are so close together that it is unusually difficult to find a sign change between them. This is called "Lehmer's ...

  3. Branch point - Wikipedia

    en.wikipedia.org/wiki/Branch_point

    Despite the algebraic branch point, the function is well-defined as a multiple-valued function and, in an appropriate sense, is continuous at the origin. This is in contrast to transcendental and logarithmic branch points, that is, points at which a multiple-valued function has nontrivial monodromy and an essential singularity.

  4. Direct product of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_product_of_groups

    In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H.This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.

  5. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  6. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    This is a linear Diophantine equation, related to Bézout's identity. + = + The smallest nontrivial solution in positive integers is 12 3 + 1 3 = 9 3 + 10 3 = 1729.It was famously given as an evident property of 1729, a taxicab number (also named Hardy–Ramanujan number) by Ramanujan to Hardy while meeting in 1917. [1]

  7. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    This formula follows from the multiplicative formula above by multiplying numerator and denominator by (n − k)!; as a consequence it involves many factors common to numerator and denominator. It is less practical for explicit computation (in the case that k is small and n is large) unless common factors are first cancelled (in particular ...

  8. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    A fast way to determine whether two numbers are coprime is given by the Euclidean algorithm and its faster variants such as binary GCD algorithm or Lehmer's GCD algorithm. The number of integers coprime with a positive integer n, between 1 and n, is given by Euler's totient function, also known as Euler's phi function, φ(n).

  9. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [ 4 ] [ 5 ] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } ). [ 6 ]