Search results
Results From The WOW.Com Content Network
Benzylideneacetone can be efficiently prepared by the base-induced condensation of acetone and benzaldehyde: [3]. CH 3 C(O)CH 3 + C 6 H 5 CHO → C 6 H 5 CH=CHC(O)CH 3 + H 2 O. However, the benzylideneacetone formed via this reaction can undergo another Claisen-Schmidt condensation with another molecule of benzaldehyde to form dibenzylideneacetone.
The pinacol reaction is extremely well-studied and tolerates many different reductants, including electrochemical syntheses.Variants are known for homo- and cross-coupling, intra- and inter-molecular reactions with appropriate diastereo- or enantioselectivity; [2] as of 2006, the only unsettled frontier was enantioselective cross-coupling of aliphatic aldehydes. [3]
The trans,trans isomer can be prepared in high yield and purity by condensation of benzaldehyde and acetone with sodium hydroxide in a water/ethanol medium followed by recrystallization. [ 2 ] This reaction, which proceeds via the intermediacy of benzylideneacetone , is often performed in organic chemistry classes, [ 6 ] and is called Claisen ...
In organic chemistry, the Claisen–Schmidt condensation is the reaction between an aldehyde or ketone having an α-hydrogen with an aromatic carbonyl compound lacking an α-hydrogen. It can be considered as a specific variation of the aldol condensation .
In organic chemistry, the benzoin addition is an addition reaction involving two aldehydes (−CH=O). The reaction generally occurs between aromatic aldehydes or glyoxals (OCH=CHO), [1] [2] and results in formation of an acyloin (−C(O)CH(OH)−). In the classic example, benzaldehyde is converted to benzoin (PhCH(OH)C(O)Ph). [3]
Benzaldehyde (C 6 H 5 CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond -like odor , and is commonly used in cherry -flavored sodas . [ 5 ]
The Baeyer–Drewsen indigo synthesis (1882) is an organic reaction in which indigo is prepared from 2-nitrobenzaldehyde and acetone [1] [2] The reaction was developed by von Baeyer and Viggo Drewsen in 1880 to produce the first synthetic indigo at laboratory scale. This procedure is not used at industrial scale.
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [2] and later by Fritz Schlotterbeck in 1907. [3]