Search results
Results From The WOW.Com Content Network
The test is named in honor of Ralph Roscoe Proctor , who in 1933 showed that the dry density of a soil for a given compactive effort depends on the amount of water the soil contains during soil compaction. [1] His original test is most commonly referred to as the standard Proctor compaction test; his test was later updated to create the ...
In geotechnical engineering, soil compaction is the process in which stress applied to a soil causes densification as air is displaced from the pores between the soil grains. When stress is applied that causes densification due to water (or other liquid) being displaced from between the soil grains, then consolidation , not compaction, has ...
Previous stresses and other changes in a soil's history are preserved within the soil's structure. [4] If a soil is loaded beyond this point the soil is unable to sustain the increased load and the structure will break down. [4] This breakdown can cause a number of different things depending on the type of soil and its geologic history.
These soils have a very slow rate of water transmission (final infiltration rate less than 0.05 in (1.3 mm) per hour). Selection of a hydrologic soil group should be done based on measured infiltration rates, soil survey (such as the NRCS Web Soil Survey), or judgement from a qualified soil science or geotechnical professional. The table below ...
This test is used by Caltrans for pavement design, replacing the California bearing ratio test. Soil compaction tests Standard Proctor (ASTM D698), Modified Proctor (ASTM D1557), and California Test 216. These tests are used to determine the maximum unit weight and optimal water content a soil can achieve for a given compaction effort.
The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. This test is the most frequently used subsurface exploration drilling test performed worldwide. The test procedure is described in ISO 22476-3, ASTM D1586 [1] and Australian Standards AS ...
In military engineering, earthworks are, more specifically, types of fortifications constructed from soil. Although soil is not very strong, it is cheap enough that huge quantities can be used, generating formidable structures. Examples of older earthwork fortifications include moats, sod walls, motte-and-bailey castles, and hill forts.
The soil sample in an oedometer test is typically a circular disc of diameter-to-height ratio of about 3:1. The sample is held in a rigid confining ring, which prevents lateral displacement of the soil sample, but allows the sample to swell or compress vertically in response to changes in applied load.