Search results
Results From The WOW.Com Content Network
In calculus, the method of normals was a technique invented by Descartes for finding normal and tangent lines to curves. It represented one of the earliest methods for constructing tangents to curves. The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would ...
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.
The distances shown are the ordinate (AP), tangent (TP), subtangent (TA), normal (PN), and subnormal (AN). The angle φ is the angle of inclination of the tangent line or the tangential angle. In geometry, the subtangent and related terms are certain line segments defined using the line tangent to a curve at a given point and the coordinate ...
In the three-dimensional case a surface normal, or simply normal, to a surface at a point P is a vector that is perpendicular to the tangent plane to that surface at P. The word "normal" is also used as an adjective: a line normal to a plane , the normal component of a force , the normal vector , etc.
In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point. A normal vector of length one is called a unit normal vector.
The circle S and the curve C have the common tangent line at P, and therefore the common normal line. Close to P, the distance between the points of the curve C and the circle S in the normal direction decays as the cube or a higher power of the distance to P in the tangential direction.
A line is normal to γ at γ(t) if it passes through γ(t) and is perpendicular to the tangent vector to γ at γ(t). Let T denote the unit tangent vector to γ and let N denote the unit normal vector. Using a dot to denote the dot product, the generating family for the one-parameter family of normal lines is given by F : I × R 2 → R where
T is the unit tangent, P the unit normal, and B the unit binormal. A Frenet frame is a moving reference frame of n orthonormal vectors e i ( t ) which are used to describe a curve locally at each point γ ( t ) .