Ad
related to: robust regression
Search results
Results From The WOW.Com Content Network
Another approach to robust estimation of regression models is to replace the normal distribution with a heavy-tailed distribution. A t-distribution with 4–6 degrees of freedom has been reported to be a good choice in various practical situations. Bayesian robust regression, being fully parametric, relies heavily on such distributions.
Robust regression methods can fit a curve to the main sequence, the central curve in this diagram, without being strongly influenced by the groups of stars far from the main sequence. Linear regression is the problem of inferring a linear functional relationship between a dependent variable and one or more independent variables , from data sets ...
Robust statistics are statistics that maintain their properties even if the underlying distributional assumptions are incorrect. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters.
Two very commonly used loss functions are the squared loss, () =, and the absolute loss, () = | |.The squared loss function results in an arithmetic mean-unbiased estimator, and the absolute-value loss function results in a median-unbiased estimator (in the one-dimensional case, and a geometric median-unbiased estimator for the multi-dimensional case).
In recent decades, new methods have been developed for robust regression, regression involving correlated responses such as time series and growth curves, regression in which the predictor (independent variable) or response variables are curves, images, graphs, or other complex data objects, regression methods accommodating various types of ...
IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.
Protesters opposing possible Immigration and Customs Enforcement (ICE) raids in public schools demonstrate on the steps of the State Department of Education during their monthly board meeting in ...
RATS: robusterrors option is available in many of the regression and optimization commands (linreg, nlls, etc.). Stata: robust option applicable in many pseudo-likelihood based procedures. [19] Gretl: the option --robust to several estimation commands (such as ols) in the context of a cross-sectional dataset produces robust standard errors. [20]