Search results
Results From The WOW.Com Content Network
Protein-ligand binding typically changes the structure of the target protein, thereby changing its function in a cell. The distinction between the two Hill equations is whether they measure occupancy or response. The Hill equation reflects the occupancy of macromolecules: the fraction that is saturated or bound by the ligand.
A ligand binding assay (LBA) is an assay, or an analytic procedure, which relies on the binding of ligand molecules to receptors, antibodies or other macromolecules. [1] A detection method is used to determine the presence and amount of the ligand-receptor complexes formed, and this is usually determined electrochemically or through a fluorescence detection method. [2]
The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:
The Hill equation can be used to describe dose–response relationships, for example ion channel-open-probability vs. ligand concentration. [9] Dose is usually in milligrams, micrograms, or grams per kilogram of body-weight for oral exposures or milligrams per cubic meter of ambient air for inhalation exposures. Other dose units include moles ...
Upon binding of an analyte to the ligand, the real-time kinetic rates (k on, k off) can be measured as changes in fluorescence intensity and the K d can be derived. This method can be used to investigate protein-protein interactions, as well as to investigate modulators of protein-protein interactions by assessing ternary complex formation.
In protein-ligand binding, the ligand is usually a molecule which produces a signal by binding to a site on a target protein. The binding typically results in a change of conformational isomerism (conformation) of the target protein. In DNA-ligand binding studies, the ligand can be a small molecule, ion, [1] or protein [2] which binds to the ...
At the regulatory site, the binding of a ligand may elicit amplified or inhibited protein function. [4] [22] The binding of a ligand to an allosteric site of a multimeric enzyme often induces positive cooperativity, that is the binding of one substrate induces a favorable conformation change and increases the enzyme's likelihood to bind to a ...
Molecular binding occurs in biological complexes (e.g., between pairs or sets of proteins, or between a protein and a small molecule ligand it binds) and also in abiologic chemical systems, e.g. as in cases of coordination polymers and coordination networks such as metal-organic frameworks.