Search results
Results From The WOW.Com Content Network
Electric potential (also called the electric field potential, potential drop, the electrostatic potential) is defined as the amount of work/energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field. More precisely, the electric potential is the energy per unit charge for a test ...
As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field.
The magnetic component of the field is considered to be in phase with the current, and the electric component is considered to be in phase with the voltage. The electric field starts at the conductor, and propagates through space at the velocity of light, which depends on the material it is traveling through. [4]
The electric potential energy stored in a capacitor is U E = 1 / 2 CV 2. Some elements in a circuit can convert energy from one form to another. For example, a resistor converts electrical energy to heat. This is known as the Joule effect. A capacitor stores it in its electric field.
If there is a potential difference between two materials due to the difference in their work functions (contact potential), this can be thought of as equivalent to the potential difference across a capacitor. The charge to compensate this is that which cancels the electric field.
As the term suggests, an EM field consists of two vector fields, an electric field (,) and a magnetic field (,).Both are time-dependent vector fields that in vacuum depend on a third vector field (,) (the vector potential), as well as a scalar field (,)
Wavelengths of electromagnetic radiation, whatever medium they are traveling through, are usually quoted in terms of the vacuum wavelength, although this is not always explicitly stated. Generally, electromagnetic radiation is classified by wavelength into radio wave, microwave, infrared, visible light, ultraviolet, X-rays and gamma rays. The ...
If this dipole can be reversed by the application of an electric field, the material is said to be ferroelectric. Any dielectric material develops a dielectric polarization (electrostatics) when an electric field is applied, but a substance which has such a natural charge separation even in the absence of a field is called a polar material ...