When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  3. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    Normalizing residuals when parameters are estimated, particularly across different data points in regression analysis. Standardized moment: Normalizing moments, using the standard deviation as a measure of scale. Coefficient of variation

  4. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  5. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance.

  6. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    The bandwidth of the Gaussian kernels is set in such a way that the entropy of the conditional distribution equals a predefined entropy using the bisection method. As a result, the bandwidth is adapted to the density of the data: smaller values of σ i {\displaystyle \sigma _{i}} are used in denser parts of the data space.

  7. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    The correlation between the gradients are computed for four models: a standard VGG network, [5] a VGG network with batch normalization layers, a 25-layer deep linear network (DLN) trained with full-batch gradient descent, and a DLN network with batch normalization layers. Interestingly, it is shown that the standard VGG and DLN models both have ...

  8. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    In statistics, standardized (regression) coefficients, also called beta coefficients or beta weights, are the estimates resulting from a regression analysis where the underlying data have been standardized so that the variances of dependent and independent variables are equal to 1. [1]

  9. scikit-multiflow - Wikipedia

    en.wikipedia.org/wiki/Scikit-multiflow

    The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods [4 ...