When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    When X n converges almost completely towards X then it also converges almost surely to X. In other words, if X n converges in probability to X sufficiently quickly (i.e. the above sequence of tail probabilities is summable for all ε > 0), then X n also converges almost surely to X. This is a direct implication from the Borel–Cantelli lemma.

  3. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    If X n are independent random variables assuming value one with probability 1/n and zero otherwise, then X n converges to zero in probability but not almost surely. This can be verified using the Borel–Cantelli lemmas.

  4. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    It is equivalent to check condition (iii) for the series = = = (′) where for each , and ′ are IID—that is, to employ the assumption that [] =, since is a sequence of random variables bounded by 2, converging almost surely, and with () = ().

  5. Almost surely - Wikipedia

    en.wikipedia.org/wiki/Almost_surely

    In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (with respect to the probability measure). [1] In other words, the set of outcomes on which the event does not occur has probability 0, even though the set might not be empty.

  6. Glivenko–Cantelli theorem - Wikipedia

    en.wikipedia.org/wiki/Glivenko–Cantelli_theorem

    If is a stationary ergodic process, then () converges almost surely to = ⁡ [] . The Glivenko–Cantelli theorem gives a stronger mode of convergence than this in the iid case. An even stronger uniform convergence result for the empirical distribution function is available in the form of an extended type of law of the iterated logarithm .

  7. Continuous mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Continuous_mapping_theorem

    The continuous mapping theorem states that this will also be true if we replace the deterministic sequence {x n} with a sequence of random variables {X n}, and replace the standard notion of convergence of real numbers “→” with one of the types of convergence of random variables.

  8. Doob's martingale convergence theorems - Wikipedia

    en.wikipedia.org/wiki/Doob's_martingale...

    It is important to note that the convergence in Doob's first martingale convergence theorem is pointwise, not uniform, and is unrelated to convergence in mean square, or indeed in any L p space. In order to obtain convergence in L 1 (i.e., convergence in mean), one requires uniform integrability of the random variables .

  9. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    Note that almost uniform convergence of a sequence does not mean that the sequence converges uniformly almost everywhere as might be inferred from the name. However, Egorov's theorem does guarantee that on a finite measure space, a sequence of functions that converges almost everywhere also converges almost uniformly on the same set.