When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    The singular value decomposition is very general in the sense that it can be applied to any ⁠ ⁠ matrix, whereas eigenvalue decomposition can only be applied to square diagonalizable matrices. Nevertheless, the two decompositions are related.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  4. Singular value - Wikipedia

    en.wikipedia.org/wiki/Singular_value

    The smallest singular value of a matrix A is σ n (A). It has the following properties for a non-singular matrix A: The 2-norm of the inverse matrix (A −1) equals the inverse σ n −1 (A). [2]: Thm.3.3 The absolute values of all elements in the inverse matrix (A −1) are at most the inverse σ n −1 (A). [2]: Thm.3.3

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: square, complex, non-singular matrix A. [5] Decomposition: =, where Q is a complex orthogonal matrix and S is complex symmetric matrix. Uniqueness: If has no negative real eigenvalues, then the decomposition is unique. [6]

  6. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  7. Numerical linear algebra - Wikipedia

    en.wikipedia.org/wiki/Numerical_linear_algebra

    The singular value decomposition of a matrix is = where U and V are unitary, and is diagonal.The diagonal entries of are called the singular values of A.Because singular values are the square roots of the eigenvalues of , there is a tight connection between the singular value decomposition and eigenvalue decompositions.

  8. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    An alternative approach, e.g., defining the normal matrix as = of size , takes advantage of the fact that for a given matrix with orthonormal columns the eigenvalue problem of the Rayleigh–Ritz method for the matrix = = can be interpreted as a singular value problem for the matrix . This interpretation allows simple simultaneous calculation ...

  9. SLEPc - Wikipedia

    en.wikipedia.org/wiki/SLEPc

    Polynomial filters for interior eigenvalues. SVD contains solvers for the singular value decomposition as well as the generalized singular value decomposition. Solvers based on the cross-product matrix or the cyclic matrix, that rely on EPS solvers. Specific solvers based on bidiagonalization such as Golub-Kahan-Lanczos and a thick-restarted ...

  1. Related searches singular value decomposition and eigenvalues of 2 linear matrix problems

    what is the singular valuehow to find singular values
    singular values wikipedia