Search results
Results From The WOW.Com Content Network
The singular value decomposition is very general in the sense that it can be applied to any matrix, whereas eigenvalue decomposition can only be applied to square diagonalizable matrices. Nevertheless, the two decompositions are related.
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
The smallest singular value of a matrix A is σ n (A). It has the following properties for a non-singular matrix A: The 2-norm of the inverse matrix (A −1) equals the inverse σ n −1 (A). [2]: Thm.3.3 The absolute values of all elements in the inverse matrix (A −1) are at most the inverse σ n −1 (A). [2]: Thm.3.3
Applicable to: square, complex, non-singular matrix A. [5] Decomposition: =, where Q is a complex orthogonal matrix and S is complex symmetric matrix. Uniqueness: If has no negative real eigenvalues, then the decomposition is unique. [6]
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
The singular value decomposition of a matrix is = where U and V are unitary, and is diagonal.The diagonal entries of are called the singular values of A.Because singular values are the square roots of the eigenvalues of , there is a tight connection between the singular value decomposition and eigenvalue decompositions.
An alternative approach, e.g., defining the normal matrix as = of size , takes advantage of the fact that for a given matrix with orthonormal columns the eigenvalue problem of the Rayleigh–Ritz method for the matrix = = can be interpreted as a singular value problem for the matrix . This interpretation allows simple simultaneous calculation ...
Polynomial filters for interior eigenvalues. SVD contains solvers for the singular value decomposition as well as the generalized singular value decomposition. Solvers based on the cross-product matrix or the cyclic matrix, that rely on EPS solvers. Specific solvers based on bidiagonalization such as Golub-Kahan-Lanczos and a thick-restarted ...