Search results
Results From The WOW.Com Content Network
Robustness testing has also been used to describe the process of verifying the robustness (i.e. correctness) of test cases in a test process. ANSI and IEEE have defined robustness as the degree to which a system or component can function correctly in the presence of invalid inputs or stressful environmental conditions. [1] The term "robustness ...
Robustness can encompass many areas of computer science, such as robust programming, robust machine learning, and Robust Security Network. Formal techniques, such as fuzz testing, are essential to showing robustness since this type of testing involves invalid or unexpected inputs. Alternatively, fault injection can be used to test robustness ...
Robust statistics are statistics that maintain their properties even if the underlying distributional assumptions are incorrect. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters.
Another approach to robust estimation of regression models is to replace the normal distribution with a heavy-tailed distribution. A t-distribution with 4–6 degrees of freedom has been reported to be a good choice in various practical situations. Bayesian robust regression, being fully parametric, relies heavily on such distributions.
These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), [1] to recognize the contributions of Friedhelm Eicker, [2] Peter J. Huber, [3] and Halbert White.
TestingCup – Polish Championship in Software Testing, Katowice, May 2016 Software testing is the act of checking whether software satisfies expectations.. Software testing can provide objective, independent information about the quality of software and the risk of its failure to a user or sponsor.
It is important to note that the test cannot prove the hypothesis (of no treatment effect), but it can provide evidence against it. [citation needed] The Fisher significance test involves a single hypothesis, but the choice of the test statistic requires an understanding of relevant directions of deviation from the hypothesized model.
Robust optimization is a field of mathematical optimization theory that deals with optimization problems in which a certain measure of robustness is sought against uncertainty that can be represented as deterministic variability in the value of the parameters of the problem itself and/or its solution.