Search results
Results From The WOW.Com Content Network
Noteworthy examples of vacuum solutions, electrovacuum solutions, and so forth, are listed in specialized articles (see below). These solutions contain at most one contribution to the energy–momentum tensor, due to a specific kind of matter or field. However, there are some notable exact solutions which contain two or three contributions ...
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. [1] Solving this problem has been motivated by the desire to understand the motions of the Sun , Moon , planets , and visible stars .
In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. [1] There is no scientific consensus on why, for example, the weak force is 10 24 times stronger than gravity .
Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result. The others are experimental, meaning that there is a difficulty in creating an experiment to test a proposed theory or investigate a phenomenon in greater detail.
The Euler three-body problem is known by a variety of names, such as the problem of two fixed centers, the Euler–Jacobi problem, and the two-center Kepler problem. The exact solution, in the full three dimensional case, can be expressed in terms of Weierstrass's elliptic functions [2] For convenience, the problem may also be solved by ...
The solutions that are not exact are called non-exact solutions. Such solutions mainly arise due to the difficulty of solving the EFE in closed form and often take the form of approximations to ideal systems. Many non-exact solutions may be devoid of physical content, but serve as useful counterexamples to theoretical conjectures.
The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force problem often makes a good initial approximation of the true motion, as in calculating ...