When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The second law of thermodynamics may be expressed in many specific ways, [23] the most prominent classical statements [24] being the statement by Rudolf Clausius (1854), the statement by Lord Kelvin (1851), and the statement in axiomatic thermodynamics by Constantin Carathéodory (1909). These statements cast the law in general physical terms ...

  3. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    The Clausius inequality is a consequence of applying the second law of thermodynamics at each infinitesimal stage of heat transfer. The Clausius statement states that it is impossible to construct a device whose sole effect is the transfer of heat from a cool reservoir to a hot reservoir. [3]

  4. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established. The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature: if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium ...

  5. Rudolf Clausius - Wikipedia

    en.wikipedia.org/wiki/Rudolf_Clausius

    Clausius restated the two laws of thermodynamics to overcome this contradiction. This paper made him famous among scientists. (The third law was developed by Walther Nernst, during the years 1906–1912). Clausius's most famous statement of the second law of thermodynamics was published in German in 1854, [10] and in English in 1856. [11]

  6. Entropy production - Wikipedia

    en.wikipedia.org/wiki/Entropy_production

    This approach provides a dynamic explanation for the Kelvin statement and the Clausius statement of the second law of thermodynamics. [ 6 ] Entropy production in diffusive-reactive system has also been studied, with interesting results emerging from diffusion, cross diffusion and reactions.

  7. File:Deriving Kelvin Statement from Clausius Statement.svg

    en.wikipedia.org/wiki/File:Deriving_Kelvin...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  8. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Clapeyron_relation

    It is named after Rudolf Clausius [1] and Benoît Paul Émile Clapeyron. [2] However, this relation was in fact originally derived by Sadi Carnot in his Reflections on the Motive Power of Fire, which was published in 1824 but largely ignored until it was rediscovered by Clausius, Clapeyron, and Lord Kelvin decades later. [3]

  9. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system.