When.com Web Search

  1. Ads

    related to: derivative fractional order systems practice problems algebra 3 answers

Search results

  1. Results From The WOW.Com Content Network
  2. Fractional-order system - Wikipedia

    en.wikipedia.org/wiki/Fractional-order_system

    Such systems are said to have fractional dynamics. Derivatives and integrals of fractional orders are used to describe objects that can be characterized by power-law nonlocality, [2] power-law long-range dependence or fractal properties. Fractional-order systems are useful in studying the anomalous behavior of dynamical systems in physics ...

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.

  4. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()

  5. Caputo fractional derivative - Wikipedia

    en.wikipedia.org/wiki/Caputo_fractional_derivative

    In mathematics, the Caputo fractional derivative, also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967.

  6. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    In addition to n th derivatives for any natural number n, there are various ways to define derivatives of fractional or negative orders, which are studied in fractional calculus. The −1 order derivative corresponds to the integral, whence the term differintegral.

  7. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    In applied mathematics and mathematical analysis, a fractional derivative is a derivative of any arbitrary order, real or complex. Its first appearance is in a letter written to Guillaume de l'Hôpital by Gottfried Wilhelm Leibniz in 1695. [2] Around the same time, Leibniz wrote to Johann Bernoulli about derivatives of "general order". [3]

  8. Differintegral - Wikipedia

    en.wikipedia.org/wiki/Differintegral

    is the fractional derivative (if q > 0) or fractional integral (if q < 0). If q = 0, then the q-th differintegral of a function is the function itself. In the context of fractional integration and differentiation, there are several definitions of the differintegral.

  9. Integro-differential equation - Wikipedia

    en.wikipedia.org/wiki/Integro-differential_equation

    Consider the following second-order problem, ′ + + = () =, where = {,, <is the Heaviside step function.The Laplace transform is defined by, = {()} = ().Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,