Search results
Results From The WOW.Com Content Network
Atom economy. Atom economy (atom efficiency/percentage) is the conversion efficiency of a chemical process in terms of all atoms involved and the desired products produced. The simplest definition was introduced by Barry Trost in 1991 and is equal to the ratio between the mass of desired product to the total mass of reactants, expressed as a percentage.
As only R is the useful product, the atoms of X, Y and Z are said to be wasted as by-products. Economic and environmental costs of disposal of these waste make a reaction with low atom economy to be "less green". A further simplified version of this is the carbon economy. It is how much carbon ends up in the useful product compared to how much ...
In a good model, the angles between the rods should be the same as the angles between the bonds, and the distances between the centers of the spheres should be proportional to the distances between the corresponding atomic nuclei. The chemical element of each atom is often indicated by the sphere's color. [2]
In outer sphere redox reactions no bonds are formed or broken; only an electron transfer (ET) takes place. A quite simple example is the Fe 2+ /Fe 3+ redox reaction, the self exchange reaction which is known to be always occurring in an aqueous solution containing the aquo complexes [Fe(H 2 O) 6] 2+ and [Fe(H 2 O)6] 3+.
The surface energy of a liquid may be measured by stretching a liquid membrane (which increases the surface area and hence the surface energy). In that case, in order to increase the surface area of a mass of liquid by an amount, δA, a quantity of work, γ δA, is needed (where γ is the surface energy density of the liquid).
The laminar finite rate model computes the chemical source terms using the Arrhenius expressions and ignores turbulence fluctuations. This model provides with the exact solution for laminar flames but gives inaccurate solution for turbulent flames, in which turbulence highly affects the chemistry reaction rates, due to highly non-linear Arrhenius chemical kinetics.
While a crude model, the liquid-drop model accounts for the spherical shape of most nuclei and makes a rough prediction of binding energy. The corresponding mass formula is defined purely in terms of the numbers of protons and neutrons it contains. The original Weizsäcker formula defines five terms:
The area of the slab is L 2, and its volume is L 2 dx. The typical number of stopping atoms in the slab is the concentration n times the volume, i.e., n L 2 dx . The probability that a beam particle will be stopped in that slab is the net area of the stopping atoms divided by the total area of the slab: