Search results
Results From The WOW.Com Content Network
It is stronger than the weak operator topology. The weak operator topology (WOT) or weak topology is defined by the seminorms |(x(h 1), h 2)| for h 1, h 2 ∈ H. (Warning: the weak Banach space topology, the weak operator topology, and the ultraweak topology are all sometimes called the weak topology, but they are different.)
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
In mathematics, the support of a real-valued function is the subset of the function domain of elements that are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
There are, in general, a vast array of possible operator topologies on L(X,Y), whose naming is not entirely intuitive. For example, the strong operator topology on L(X,Y) is the topology of pointwise convergence. For instance, if Y is a normed space, then this topology is defined by the seminorms indexed by x ∈ X:
The predual of B(H) is the trace class operators C 1 (H), and it generates the w*-topology on B(H), called the weak-star operator topology or σ-weak topology. The weak-operator and σ-weak topologies agree on norm-bounded sets in B(H). A net {T α} ⊂ B(H) converges to T in WOT if and only Tr(T α F) converges to Tr(TF) for all finite-rank ...
This is a list of useful examples in general topology, a field of mathematics. Alexandrov topology; Cantor space; Co-kappa topology Cocountable topology; Cofinite topology; Compact-open topology; Compactification; Discrete topology; Double-pointed cofinite topology; Extended real number line; Finite topological space; Hawaiian earring; Hilbert cube
The ultraweak topology is similar to the weak operator topology. For example, on any norm-bounded set the weak operator and ultraweak topologies are the same, and in particular, the unit ball is compact in both topologies. The ultraweak topology is stronger than the weak operator topology.