When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    There are many other combinatorial interpretations of binomial coefficients (counting problems for which the answer is given by a binomial coefficient expression), for instance the number of words formed of n bits (digits 0 or 1) whose sum is k is given by (), while the number of ways to write = + + + where every a i is a nonnegative integer is ...

  4. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    The word FOIL is an acronym for the four terms of the product: First ("first" terms of each binomial are multiplied together) Outer ("outside" terms are multiplied—that is, the first term of the first binomial and the second term of the second) Inner ("inside" terms are multiplied—second term of the first binomial and first term of the second)

  5. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.

  6. Kummer's theorem - Wikipedia

    en.wikipedia.org/wiki/Kummer's_theorem

    In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).

  7. Freshman's dream - Wikipedia

    en.wikipedia.org/wiki/Freshman's_dream

    Since a binomial coefficient is always an integer, the nth binomial coefficient is divisible by p and hence equal to 0 in the ring. We are left with the zeroth and pth coefficients, which both equal 1, yielding the desired equation. Thus in characteristic p the freshman's dream is a valid identity.

  8. Gaussian binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Gaussian_binomial_coefficient

    To obtain the Gaussian binomial coefficient (), each word is associated with a factor q d, where d is the number of inversions of the word, where, in this case, an inversion is a pair of positions where the left of the pair holds the letter 1 and the right position holds the letter 0.

  9. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).