When.com Web Search

  1. Ads

    related to: geometry transformations practice problems

Search results

  1. Results From The WOW.Com Content Network
  2. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :

  3. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Many of these problems are easily solvable provided that other geometric transformations are allowed; for example, neusis construction can be used to solve the former two problems. In terms of algebra , a length is constructible if and only if it represents a constructible number , and an angle is constructible if and only if its cosine is a ...

  4. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied.

  5. Transformation geometry - Wikipedia

    en.wikipedia.org/wiki/Transformation_geometry

    In mathematics, transformation geometry (or transformational geometry) is the name of a mathematical and pedagogic take on the study of geometry by focusing on groups of geometric transformations, and properties that are invariant under them.

  6. Möbius transformation - Wikipedia

    en.wikipedia.org/wiki/Möbius_transformation

    These transformations preserve angles, map every straight line to a line or circle, and map every circle to a line or circle. The Möbius transformations are the projective transformations of the complex projective line. They form a group called the Möbius group, which is the projective linear group PGL(2, C).

  7. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...