Search results
Results From The WOW.Com Content Network
In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect to time, and the oscillations at different points throughout the wave are in phase .
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...
The wavefunction itself is not stationary: It continually changes its overall complex phase factor, so as to form a standing wave. The oscillation frequency of the standing wave, multiplied by the Planck constant, is the energy of the state according to the Planck–Einstein relation.
A standing wave is a continuous form of normal mode. In a standing wave, all the space elements (i.e. (x, y, z) coordinates) are oscillating in the same frequency and in phase (reaching the equilibrium point together), but each has a different amplitude. The general form of a standing wave is:
The time-dependent Schrödinger equation described above predicts that wave functions can form standing waves, called stationary states. These states are particularly important as their individual study later simplifies the task of solving the time-dependent Schrödinger equation for any state. Stationary states can also be described by a ...
A new type of stellar object has been discovered releasing energetic bursts of radio waves every 22 minutes. An unusual object has been releasing pulses of radio waves in space for decades ...
where h is the Planck constant, and p is the particle's momentum, and λ is the wavelength of the matter wave. From this, it follows that interference effects between particles of matter will occur. This forms the basis of the Kapitza–Dirac effec: the diffraction of matter wave due to a standing wave of light.
Klein's Nature article [5] suggested that the fifth dimension is closed and periodic, and that the identification of electric charge with motion in the fifth dimension can be interpreted as standing waves of wavelength , much like the electrons around a nucleus in the Bohr model of the atom. The quantization of electric charge could then be ...