When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    Download as PDF; Printable version; In other projects ... In algebraic geometry, if : is a morphism of schemes, the fiber of a point in is the fiber product ...

  3. Bundle map - Wikipedia

    en.wikipedia.org/wiki/Bundle_map

    In mathematics, a bundle map (or bundle morphism) is a morphism in the category of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber ...

  4. Stein factorization - Wikipedia

    en.wikipedia.org/wiki/Stein_factorization

    In algebraic geometry, the Stein factorization, introduced by Karl Stein for the case of complex spaces, states that a proper morphism can be factorized as a composition of a finite mapping and a proper morphism with connected fibers. Roughly speaking, Stein factorization contracts the connected components of the fibers of a mapping to points.

  5. Morphism - Wikipedia

    en.wikipedia.org/wiki/Morphism

    For every object X, there exists a morphism id X : X → X called the identity morphism on X, such that for every morphism f : A → B we have id B ∘ f = f = f ∘ id A. Associativity h ∘ (g ∘ f) = (h ∘ g) ∘ f whenever all the compositions are defined, i.e. when the target of f is the source of g, and the target of g is the source of h.

  6. Fiber product of schemes - Wikipedia

    en.wikipedia.org/wiki/Fiber_product_of_schemes

    Then there is a morphism Spec(k(y)) → Y with image y, where k(y) is the residue field of y. The fiber of f over y is defined as the fiber product X × Y Spec(k(y)); this is a scheme over the field k(y). [3] This concept helps to justify the rough idea of a morphism of schemes X → Y as a family of schemes parametrized by Y.

  7. Minimal model program - Wikipedia

    en.wikipedia.org/wiki/Minimal_model_program

    Castelnuovo's theorem implies that to construct a minimal model for a smooth surface, we simply contract all the −1-curves on the surface, and the resulting variety Y is either a (unique) minimal model with K nef, or a ruled surface (which is the same as a 2-dimensional Fano fiber space, and is either a projective plane or a ruled surface ...

  8. Canonical bundle - Wikipedia

    en.wikipedia.org/wiki/Canonical_bundle

    A genus fibration: of is a proper flat morphism to a smooth curve such that and all fibers of have arithmetic genus. If X {\displaystyle X} is a smooth projective surface and the fibers of f {\displaystyle f} do not contain rational curves of self-intersection − 1 {\displaystyle -1} , then the fibration is called minimal .

  9. Projective bundle - Wikipedia

    en.wikipedia.org/wiki/Projective_bundle

    In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces. By definition, a scheme X over a Noetherian scheme S is a P n -bundle if it is locally a projective n -space; i.e., X × S U ≃ P U n {\displaystyle X\times _{S}U\simeq \mathbb {P} _{U}^{n}} and transition automorphisms are linear.

  1. Related searches fiber of a morphism pdf full version kuyhaa 10 11 2018 youtube

    fiber of a morphism pdf full version kuyhaa 10 11 2018 youtube download