Search results
Results From The WOW.Com Content Network
FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG – number of FLT_RADIX-base digits in the floating-point significand for types float, double, long double, respectively FLT_MIN_EXP , DBL_MIN_EXP , LDBL_MIN_EXP – minimum negative integer such that FLT_RADIX raised to a power one less than that number is a normalized float, double, long double ...
Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal to 0) is used.
Arithmetic underflow can occur when the true result of a floating-point operation is smaller in magnitude (that is, closer to zero) than the smallest value representable as a normal floating-point number in the target datatype. [1] Underflow can in part be regarded as negative overflow of the exponent of the floating-point value. For example ...
var c = 0.0 // The array input has elements indexed for i = 1 to input.length do // c is zero the first time around. var y = input[i] + c // sum + c is an approximation to the exact sum. (sum,c) = Fast2Sum(sum,y) // Next time around, the lost low part will be added to y in a fresh attempt. next i return sum
C and C++ perform such promotion for objects of Boolean, character, wide character, enumeration, and short integer types which are promoted to int, and for objects of type float, which are promoted to double. Unlike some other type conversions, promotions never lose precision or modify the value stored in the object. In Java:
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.
Before JVM 1.2, floating-point calculations were required to be strict; that is, all intermediate floating-point results were required to behave as if represented using IEEE single or double precisions. This made it expensive on common x87-based hardware to ensure that overflows would occur where required.
C# allows an implementation for a given hardware architecture to always use a higher precision for intermediate results if available, i.e. C# does not allow the programmer to optionally force intermediate results to use the potential lower precision of single/double. [94] Although Java's floating-point arithmetic is largely based on IEEE 754 ...