When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  3. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Three broad categories of anomaly detection techniques exist. [1] Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier. However, this approach is rarely used in anomaly detection due to the general unavailability of labelled data and the inherent ...

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    RAWPED is a dataset for detection of pedestrians in the context of railways. The dataset is labeled box-wise. 26000 Images Object recognition and classification 2020 [70] [71] Tugce Toprak, Burak Belenlioglu, Burak Aydın, Cuneyt Guzelis, M. Alper Selver OSDaR23 OSDaR23 is a multi-sensory dataset for detection of objects in the context of railways.

  5. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    The Isolation Forest algorithm provides a robust solution for anomaly detection, particularly in domains like fraud detection where anomalies are rare and challenging to identify. However, its reliance on hyperparameters and sensitivity to imbalanced data necessitate careful tuning and complementary techniques for optimal results.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.

  8. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Transformers typically are first pretrained by self-supervised learning on a large generic dataset, followed by supervised fine-tuning on a small task-specific dataset. The pretrain dataset is typically an unlabeled large corpus, such as The Pile. Tasks for pretraining and fine-tuning commonly include: language modeling [12] next-sentence ...

  9. Labeled data - Wikipedia

    en.wikipedia.org/wiki/Labeled_data

    The labeled data used to train a specific machine learning algorithm needs to be a statistically representative sample to not bias the results. [5] For example, in facial recognition systems underrepresented groups are subsequently often misclassified if the labeled data available to train has not been representative of the population,.