When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor. The k-NN algorithm can also be generalized for regression.

  3. iDistance - Wikipedia

    en.wikipedia.org/wiki/IDistance

    The kNN query is one of the hardest problems on multi-dimensional data, especially when the dimensionality of the data is high. The iDistance is designed to process kNN queries in high-dimensional spaces efficiently and it is especially good for skewed data distributions, which usually occur in real-life data sets. The iDistance can be ...

  4. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest (or most similar) to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.

  5. Nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor

    Nearest neighbor function in probability theory; Nearest neighbor decoding in coding theory; The k-nearest neighbor algorithm in machine learning, an application of generalized forms of nearest neighbor search and interpolation; The nearest neighbour algorithm for approximately solving the travelling salesman problem; The nearest-neighbor ...

  6. Inductive bias - Wikipedia

    en.wikipedia.org/wiki/Inductive_bias

    Nearest neighbors: assume that most of the cases in a small neighborhood in feature space belong to the same class. Given a case for which the class is unknown, guess that it belongs to the same class as the majority in its immediate neighborhood. This is the bias used in the k-nearest neighbors algorithm. The assumption is that cases that are ...

  7. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    Additionally, even in low-dimensional space, if the average pairwise distance between the k nearest neighbors of the query point is significantly less than the average distance between the query point and each of the k nearest neighbors, the performance of nearest neighbor search degrades towards linear, since the distances from the query point ...

  8. Nearest-neighbor interpolation - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_interpolation

    The nearest neighbor algorithm selects the value of the nearest point and does not consider the values of neighboring points at all, yielding a piecewise-constant interpolant. [1] The algorithm is very simple to implement and is commonly used (usually along with mipmapping) in real-time 3D rendering [2] to select color values for a textured ...

  9. Fixed-radius near neighbors - Wikipedia

    en.wikipedia.org/wiki/Fixed-radius_near_neighbors

    Modern parallel methods for GPU are able to efficiently compute all pairs fixed-radius NNS. For finite domains, the method of Green [3] shows the problem can be solved by sorting on a uniform grid, finding all neighbors of all particles in O(kn) time, where k is proportional to the average number of neighbors.