When.com Web Search

  1. Ad

    related to: linear span example math equation in two variables easy

Search results

  1. Results From The WOW.Com Content Network
  2. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains . It is the set of all finite linear combinations of the elements of S , [ 2 ] and the intersection of all linear subspaces that contain S . {\displaystyle S.}

  3. Linear equation - Wikipedia

    en.wikipedia.org/wiki/Linear_equation

    Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding ...

  4. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. Linear algebra is the branch of mathematics concerning linear equations such as:

  5. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.

  6. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    The tensor product, or simply , of two vector spaces and is one of the central notions of multilinear algebra which deals with extending notions such as linear maps to several variables. A map g : V × W → X {\displaystyle g:V\times W\to X} from the Cartesian product V × W {\displaystyle V\times W} is called bilinear if g {\displaystyle g ...

  7. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    If the son's age was made known, then there would no longer be two unknowns (variables). The problem then becomes a linear equation with just one variable, that can be solved as described above. To solve a linear equation with two variables (unknowns), requires two related equations. For example, if it was also revealed that: Problem in words

  8. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.

  9. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.