When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Damköhler numbers - Wikipedia

    en.wikipedia.org/wiki/Damköhler_numbers

    The Damköhler numbers (Da) are dimensionless numbers used in chemical engineering to relate the chemical reaction timescale (reaction rate) to the transport phenomena rate occurring in a system. It is named after German chemist Gerhard Damköhler , who worked in chemical engineering, thermodynamics, and fluid dynamics. [ 1 ]

  3. Surface and bulk erosion - Wikipedia

    en.wikipedia.org/wiki/Surface_and_bulk_erosion

    For very thin materials, the surface area remains relatively constant when the material degrades, which allows surface erosion to be characterized as zero order release since the rate of degradation is constant. [2] [3] In bulk erosion, the erosion rate depends on the volume of the material. [3]

  4. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  5. Plateau principle - Wikipedia

    en.wikipedia.org/wiki/Plateau_Principle

    C 0 is the initial concentration (t = 0) k e is the elimination rate constant; The relationship between the elimination rate constant and half-life is given by the following equation: = ⁡ / Because ln 2 equals 0.693, the half-life is readily calculated from the elimination rate constant.

  6. Streeter–Phelps equation - Wikipedia

    en.wikipedia.org/wiki/Streeter–Phelps_equation

    Normally θ has the value 1.048 for and 1.024 for . An increasing temperature has the most impact on the deoxygenation rate, and results in an increased critical deficit ( D c r i t {\displaystyle D_{crit}} ), and x c r i t {\displaystyle x_{crit}} decreases.

  7. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]

  8. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  9. Arrhenius plot - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_plot

    In consequence, the reaction rate constant increases rapidly with temperature , as shown in the direct plot of against . (Mathematically, at very high temperatures so that E a ≪ R T {\displaystyle E_{\text{a}}\ll RT} , k {\displaystyle k} would level off and approach A {\displaystyle A} as a limit, but this case does not occur under practical ...