Search results
Results From The WOW.Com Content Network
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
The product is isolated from the mixture by the following work-up: [3] Synthesis of 4-methylcyclohexene with work-up step in red. A concentrated solution of sodium chloride in water, known as a brine solution, is added to the mixture and the layers are allowed to separate. The brine is used to remove any acid or water from the organic layer.
The basic definition of "energy" is a measure of a body's (in thermodynamics, the system's) ability to cause change. For example, when a person pushes a heavy box a few metres forward, that person exerts mechanical energy, also known as work, on the box over a distance of a few meters forward.
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
In thermodynamics, the Gibbs free energy or Helmholtz free energy is essentially the energy of a chemical reaction "free" or available to do external work. Historically, the "free energy" is a more advanced and accurate replacement for the thermochemistry term “affinity” used by chemists of olden days to describe the “force” that caused chemical reactions.
The work function W for a given surface is defined by the difference [1] =, where −e is the charge of an electron, ϕ is the electrostatic potential in the vacuum nearby the surface, and E F is the Fermi level (electrochemical potential of electrons) inside the material.
Within chemistry, a Job plot, otherwise known as the method of continuous variation or Job's method, is a method used in analytical chemistry to determine the stoichiometry of a binding event. The method is named after Paul Job and is also used in instrumental analysis and advanced chemical equilibrium texts and research articles.
Systems chemistry is the science of studying networks of interacting molecules, to create new functions from a set (or library) of molecules with different hierarchical levels and emergent properties. [1] [2] Systems chemistry is also related to the origin of life (abiogenesis). [3]