Search results
Results From The WOW.Com Content Network
Aeolian dust is a critical part of the iron cycle by transporting iron particulates from the Earth's land via the atmosphere to the ocean. [23] Volcanic eruptions are also a key contributor to the terrestrial iron cycle, releasing iron-rich dust into the atmosphere in either a large burst or in smaller spurts over time. [24]
Iron is a key micronutrient in primary productivity, [49] and a limiting nutrient in the Southern ocean, eastern equatorial Pacific, and the subarctic Pacific referred to as High-Nutrient, Low-Chlorophyll (HNLC) regions of the ocean. [50] Iron in the ocean cycles between plankton, aggregated particulates (non-bioavailable iron), and dissolved ...
Ocean iron fertilization is an example of a geoengineering technique that involves intentional introduction of iron-rich deposits into oceans, and is aimed to enhance biological productivity of organisms in ocean waters in order to increase carbon dioxide (CO 2) uptake from the atmosphere, possibly resulting in mitigating its global warming effects.
Solidified lava flow in Hawaii Sedimentary layers in Badlands National Park, South Dakota Metamorphic rock, Nunavut, Canada. Geology (from Ancient Greek γῆ (gê) 'earth' and λoγία () 'study of, discourse') [1] [2] is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. [3]
In a paper published in 1998 in Nature, [1] Canfield argued that the deep ocean was anoxic and sulfidic (also known as euxinic) during the time of the Boring Billion (1.8–0.8 billion years ago (Gya)), and that those conditions ceased the mineral deposition of iron-rich banded iron formations (BIF) in ocean sediments.
Marine chemistry, also known as ocean chemistry or chemical oceanography, is the study of the chemical composition and processes of the world’s oceans, including the interactions between seawater, the atmosphere, the seafloor, and marine organisms. [2]
The isotopically heavy iron in the deep ocean suggests that the iron cycle is dominated by the abiotic, non-reductive release of iron, via desorption or dissolution, from particles. [38] Isotopic analyses similar to the one above are utilized throughout all of the world's oceans to better understand regional variability in the processes which ...
Full article: Iron Fertilization. Iron fertilization is a facet of geoengineering, which purposefully manipulates the Earth's climate system, typically in aspects of the carbon cycle or radiative forcing. Of current geoengineering interest is the possibility of accelerating the biological pump to increase export of carbon from the surface ocean.