Search results
Results From The WOW.Com Content Network
Aeolian dust is a critical part of the iron cycle by transporting iron particulates from the Earth's land via the atmosphere to the ocean. [23] Volcanic eruptions are also a key contributor to the terrestrial iron cycle, releasing iron-rich dust into the atmosphere in either a large burst or in smaller spurts over time. [24]
Iron is a key micronutrient in primary productivity, [49] and a limiting nutrient in the Southern ocean, eastern equatorial Pacific, and the subarctic Pacific referred to as High-Nutrient, Low-Chlorophyll (HNLC) regions of the ocean. [50] Iron in the ocean cycles between plankton, aggregated particulates (non-bioavailable iron), and dissolved ...
Full article: Iron Fertilization. Iron fertilization is a facet of geoengineering, which purposefully manipulates the Earth's climate system, typically in aspects of the carbon cycle or radiative forcing. Of current geoengineering interest is the possibility of accelerating the biological pump to increase export of carbon from the surface ocean.
In a paper published in 1998 in Nature, [1] Canfield argued that the deep ocean was anoxic and sulfidic (also known as euxinic) during the time of the Boring Billion (1.8–0.8 billion years ago (Gya)), and that those conditions ceased the mineral deposition of iron-rich banded iron formations (BIF) in ocean sediments.
Tides are the regular rise and fall in water level experienced by seas and oceans in response to the gravitational influences of the Moon and the Sun, and the effects of the Earth's rotation. During each tidal cycle, at any given place the water rises to a maximum height known as "high tide" before ebbing away again to the minimum "low tide" level.
Ocean iron fertilization is an example of a geoengineering technique that involves intentional introduction of iron-rich deposits into oceans, and is aimed to enhance biological productivity of organisms in ocean waters in order to increase carbon dioxide (CO 2) uptake from the atmosphere, possibly resulting in mitigating its global warming effects.
Marine chemistry, also known as ocean chemistry or chemical oceanography, is the study of the chemical composition and processes of the world’s oceans, including the interactions between seawater, the atmosphere, the seafloor, and marine organisms. [2]
Another cause of concern is the sheer amount of urea needed to capture the same amount of carbon as eq. iron fertilization. The nitrogen to iron ratio in a typical algae cell is 16:0.0001, meaning that for every iron atom added to the ocean a substantial larger amount of carbon is captured compared to adding one atom of nitrogen. [35]