Search results
Results From The WOW.Com Content Network
In mathematics, the determinant is a scalar-valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or | A |. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix.
The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus, it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function.
The determinant is a special case of the immanant, where is the alternating character, of S n, defined by the parity of a permutation. The permanent is the case where χ λ {\displaystyle \chi _{\lambda }} is the trivial character , which is identically equal to 1.
In mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder).
For example, given a field, the set of polynomials with coefficients in is the polynomial ring with polynomial addition and multiplication as operations. In particular, if two indeterminates X {\displaystyle X} and Y {\displaystyle Y} are used, then the polynomial ring K [ X , Y ] {\displaystyle K[X,Y]} also uses these operations, and ...
Given m and n and r < min(m, n), the determinantal variety Y r is the set of all m × n matrices (over a field k) with rank ≤ r.This is naturally an algebraic variety as the condition that a matrix have rank ≤ r is given by the vanishing of all of its (r + 1) × (r + 1) minors.