When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electric flux - Wikipedia

    en.wikipedia.org/wiki/Electric_flux

    For simplicity in calculations it is often convenient to consider a surface perpendicular to the flux lines. If the electric field is uniform, the electric flux passing through a surface of vector area A is = = ⁡, where E is the electric field (having the unit V/m), E is its magnitude, A is the area of the surface, and θ is the angle between ...

  3. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    For example, consider a conductor moving in the field of a magnet. [8] In the frame of the magnet, that conductor experiences a magnetic force. But in the frame of a conductor moving relative to the magnet, the conductor experiences a force due to an electric field. The motion is exactly consistent in these two different reference frames, but ...

  5. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.

  6. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    No charge is enclosed by the sphere. Electric flux through its surface is zero. Gauss's law may be expressed as: [6] = where Φ E is the electric flux through a closed surface S enclosing any volume V, Q is the total charge enclosed within V, and ε 0 is the electric constant.

  7. Nernst–Planck equation - Wikipedia

    en.wikipedia.org/wiki/Nernst–Planck_equation

    where is the flux. It is assumed that the total flux is composed of three elements: diffusion , advection , and electromigration . This implies that the concentration is affected by an ionic concentration gradient ∇ c {\displaystyle \nabla c} , flow velocity v {\displaystyle {\bf {v}}} , and an electric field E {\displaystyle {\bf {E}}} :

  8. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    Jefimenko says, "...neither Maxwell's equations nor their solutions indicate an existence of causal links between electric and magnetic fields. Therefore, we must conclude that an electromagnetic field is a dual entity always having an electric and a magnetic component simultaneously created by their common sources: time-variable electric ...

  9. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    For example, a nearby conductive surface will exert a drag force on a moving magnet that opposes its motion, due to eddy currents induced in the surface by the moving magnetic field. This effect is employed in eddy current brakes which are used to stop rotating power tools quickly when they are turned off.